

ANALYZER GUIDE

ANALYZER GUIDE

ABOUT US

AMETEK Process Instruments is a worldwide manufacturer of process analyzers and instrumentation.

At AMETEK Process Instruments, we focus our experience on designing innovative analyzers that help our customers reach higher levels of productivity and quality. We achieve this by finding ways to overcome the limitations of current methods of process monitoring, control and quality assurance. Through this focus we have created some of the most capable technologies in the world.

Our primary focus in analyzer design is reliability. We understand that you must have confidence that the analyzer will provide the correct information when you need it. It is a documented fact that many of our analyzers have been in service for well over 20 years.

Markets Served:

Core Competencies

- Burner air/fuel mixing control
- Chemical composition analysis of gases and liquids
- Coal fired power generation
- Combustion and furnace atmosphere control
- Combustion/process heating
- Contamination monitoring of high and ultra-high purity gases
- Heat treating atmosphere monitoring/control
- Natural gas processing and transmission
- Pharmaceutical solvent drying processes
- Emissions monitoring
- Quality monitoring of gas and liquid feedstocks
- Refining and petrochemical processes
- Sulfur recovery processes
- Trace analysis
- Vacuum analysis/residual gas analysis

Analyzer Technologies

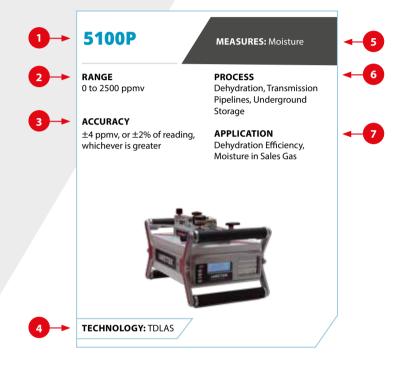
- Gas chromatographs (GC)
- · Gas gravitometers
- Katharometers
- Manual and online chilled-mirror dew point analyzers
- Mass spectrometers
- Optical luminescent oxygen
- Quartz crystal microbalance (QCM) and electrolytic moisture analyzers
- Residual gas analyzers
- Tunable diode laser absorption spectroscopy (TDLAS)
- Ultraviolet and visible (UV-VIS) and infrared (IR) process analyzers
- X-ray transmission (XRT)
- Zirconium oxide analyzers

Unique Solutions – Custom Designs

No single solution fits all applications or processes. If a preengineered product does not meet your needs, we will work with you to custom-design an analyzer suited to your specific application. We pride ourselves on our technical applications knowledge and willingness to produce unique analyzers and solutions for our customers.

Service Commitment

Our customer commitment continues well beyond start-up and commissioning. We offer a wide variety of service plans and resources to support our customers' installations anywhere in the world.



USER GUIDE

Find the right analyzer for your application. We've made it simple with our at-a-glance listings, separated into the key markets we supply.

GLOSSARY

ABBREVIATION	DESCRIPTION	
AMU	Atomic mass unit	
BTU	British thermal unit	
CCR	Continuous catalyst regeneration	
CEM	Continuous emission monitoring	
GC-FID	Gas chromatography with flame ionization detector	
GC-RGD	Gas chromatography with reduction gas detector	
IR	Infrared	
LNG	Liquefied natural gas	
LPG	Liquefied petroleum gas	
MAU	Milli-absorbance unit	
NDIR	Nondispersive infrared	
NGL	Natural gas liquids	
P ₂ O ₅	Phosphorus pentoxide	
ppb	Parts per billion	
ppbv	Parts per billion by volume	
ppm	Parts per million	
ppmv	Parts per million by volume	
ppmw	Parts per million by weight	
QCM	Quartz crystal microbalance	
QL	Quenched luminescent	
TCD	Thermal conductivity detector	
TDLAS	Tunable diode laser absorption spectroscopy	
TGTU	Tail gas treating unit	
TRS	Total reduced sulfur	
UV	Ultraviolet	
ZrO ₂	Zirconium oxide	

1. MODEL - Analyzer name	
2. RANGE - Valid measurement concentrations	
3. ACCURACY - Degree of measurement precision	
4. TECHNOLOGY - Measurement technology used	
5. MEASURES - Elements or compounds detected	
6. PROCESS - Chemical operation/operating unit	
7. APPLICATION - Particular function	

CONTENTS

	IAGE
HYDROCARBON PROCESSING	6
METALS & MINING	12
NATURAL GAS	16
PHARMACEUTICAL	21
POWER & STEAM GENERATION	24
PULP & PAPER, GLASS, CEMENT & LIME	27
SEMICONDUCTOR, LCD/OLED DISPLAY MANUFACTURING & INDUSTRIAL GASES	30
OTHER APPLICATIONS	35

PAGE

HYDROCARBON PROCESSING

888

MEASURES: H₂S, SO₂

RANGE

Standard: 0 to 1% SO₂; 0 to 2% H₂S High Range: 0 to 2% SO₂; 0 to 4% H₂S

ACCURACY

±1% of full scale

WILKSONES. 1125,

PROCESSSulfur Recovery

; Sulfur Reco

APPLICATION

Tail Gas/Air Demand Ratio, Sulfur Pit Safety Monitoring

TECHNOLOGY: UV

900

MEASURES: H₂S, SO₂, COS, CS₂

RANGE

Species measured	Minimum full scale	Maximum full scale
H₂S	250 ppm	100%
SO ₂	250 ppm	100%
CS ₂	5000 ppm	100%
cos	5000 nnm	100%

ACCURACY

 SO_2 and H_2S : $\pm 1\%$ of full scale of standard ranges COS and CS_2 : $\pm 10\%$ of full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

Tail Gas/Air Demand Ratio

TECHNOLOGY: UV

IPS-4

H₂S, NO, NO₂, NOx, THC, ASTM color standards, Ethylene Glycol

MEASURES: NH₃, H₂O, CO₂, SO₂,

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Sulfur Recovery, Emission Compliance, Ethylene Oxide, Sour Gas Treatment, SO₂ Recovery/H₂SO₄

APPLICATION

Feed Forward, Emissions, Ethylene Glycol QA/QC, Amine Efficiency, SO₂ Removal Efficiency

TECHNOLOGY: UV/NDIR

9900 RM/WM

MEASURES: H_2S , SO_2 , NO, NO_2 , CIO_2 , NOx, NH_3 , Optional O_2

RANGE

Species Measured	Single Species Minimum Full Scale	Multi-Species Minimum Full Scale
SO ₂	10 ppm	20 ppm
H₂S	25 ppm	100 ppm
NO	50 ppm	50 ppm
NO ₂	100 ppm	100 ppm
NOx	n/a	100 ppm
O ₂	0%	25%

ACCURACY

Better than $\pm 1.0\%$ of standard full scale range O_2 : $\pm 0.1\%$

PROCESS

Emissions Control

APPLICATION

Continuous Emission Monitoring System

TECHNOLOGY: UV (opt. Paramagnetic/ZrO₂)

HYDROCARBON PROCESSING

Optimized process solutions

With decades of experience in this industry,

for the hydrocarbon processing market.

AMETEK Process Instruments offers an extensive

range of combustion, gas, and moisture analyzers

Our unique technologies and advanced designs

product produced in safe operating conditions.

provide the critical measurements needed to optimize your process. This ensures a high-quality

HYDROCARBON PROCESSING

909

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Species measured	Minimum full scale	Maximum full scale
SO ₂	250 ppm	100%
NO	250 ppm	100%
NO ₂	250 ppm	100%
H₂S	250 ppm	100%
NH₃	250 ppm	100%
Cl ₂	250 ppm	100%

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

CEM, Mass Flow Single Gas

TECHNOLOGY: UV

919

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Species measured	Minimum full scale	Maximum full scale
SO ₂	250 ppm	100%
NO	250 ppm	100%
NO ₂	250 ppm	100%
H₂S	250 ppm	100%
NH₃	250 ppm	100%
Cl ₂	250 ppm	100%

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

CEM Single Gas (no mass flow)

TECHNOLOGY: UV

910

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Species measured	Minimum full scale	Maximum full scale
SO ₂	250 ppm	100%
NO	250 ppm	100%
NO ₂	250 ppm	100%
NOx	250 ppm	100%
H ₂ S	250 ppm	100%
NH₃	250 ppm	100%
Cl ₂	250 ppm	100%

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

CEM, Mass Flow Multi Gas

TECHNOLOGY: UV

920

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Species measured	Minimum full scale	Maximum full scale
SO ₂	250 ppm	100%
NO	250 ppm	100%
NO_2	250 ppm	100%
NOx	250 ppm	100%
H₂S	250 ppm	100%
NH₃	250 ppm	100%
Cl ₂	250 ppm	100%

±1% full scale of standard ranges ±2.0% full scale of standard ranges for H₂S + NH₃ application

PROCESS

Sulfur Recovery

APPLICATION

CEM Multi Gas (no mass flow)

TECHNOLOGY: UV

HYDROCARBON PROCESSING

931/932

MEASURES: H₂S, Optional COS, CS₂, NH₃, SO₂, H₂, CO₂

RANGE

H₂S: ppm ranges to high percent levels H₂: 0 to 5% or 0 to 10%

Other components and ranges are available upon request

ACCURACY

Standard range (UV): ±1% of full scale of standard ranges Optional (TCD) H₂ sensor for TGTU applications: ±2% on a 0 to 10% range

TECHNOLOGY: UV/TCD

PROCESS

Sulfur Recovery

APPLICATION

Feed Forward/TGTU

APPLICATION Sulfur Pit

PROCESS

Sulfur Recovery

930

RANGE

measured

H₂S

SO₂

ACCURACY

(other ranges available on request)

±1% full scale of standard ranges

Maximum

full scale

0-4%

0-2%

MEASURES: H₂S, SO₂

TECHNOLOGY: UV

934

RANGE

0 to 5% or 0 to 10%

ACCURACY

±2% on a 0-10% range ±4% on a 0-5% range

MEASURES: H₂

PROCESS Sulfur Recovery

APPLICATION

TGTU Efficiency

TECHNOLOGY: TCD

914

MEASURES: H₂S, SO₂, NO, NO₂, NO_x, CO₂, O₂

Designed to meet regulatory reporting requirements for CEM

ACCURACY

Designed to meet customer specifications

PROCESS Emissions Control

APPLICATION CEM (cold-dry)

TECHNOLOGY: UV, NDIR, Paramagnetic

3050-OLV

MEASURES: H₂O

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$ of reading, whichever is greater

TECHNOLOGY: QCM

PROCESS

Continuous Catalyst Regeneration

APPLICATION

Hydrogen Recycle Gas

AVAILABLE OPTION:

AMEVision for 3050 series

5000

above 1000 ppmv

RANGE

PROCESS

MEASURES: H₂O

0 to 1000 ppmv, trend indication Continuous Catalyst Regeneration

Output capability in lb./mmscf APPLICATION and dew point temperature Hydrogen Recycle Gas (requires sample line pressure

systems only) **ACCURACY**

±1 ppmv or ±5% of reading, whichever is greater

as analog input; single point

TECHNOLOGY: QCM

5100HD

RANGE

ppmv to % level, application dependent

ACCURACY

±2% of reading (typical)

PROCESS

Ethylene Production, Refining, **Emission Compliance**

APPLICATION

MEASURES: CO, CO₂, O₂,

Acetylene Conversion Rate, CO and CO₂ Levels in Furnace Decoking, Moisture in Continuous Catalyst Regeneration, Moisture in Hydrogen Recycle Gas, Moisture in Olefins (UOP Catalytic Regeneration), H₂S in Flare and Refinery Fuel Gas

Consult AMETEK for more potential applications

TECHNOLOGY: TDLAS

ta3000R

RANGE

0 to 3 ppmv

ACCURACY

 ± 10 ppbv or $\pm 10\%$ of reading, whichever is greater

PROCESS

PE/PP Production, Ethylene/ Propylene Feedstock

APPLICATION

MEASURES: CO

Catalyst Protection

TECHNOLOGY: GC-RGD

HYDROCARBON PROCESSING

WDG-V

RANGE

O₂: From 0-1% to 0-100% Combustibles: 0-2,000 ppmv Hydrocarbon: 0-5%

ACCURACY

O₂: ±0.75% of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full-scale output range

Hydrocarbon: ±5% of full scale output range

MEASURES: O₂, Combustibles (CO+H₂), Methane/ Hydrocarbons (CH₄+)

PROCESS

Fired Heaters, Power Generation

APPLICATION

Combustion Control in Ethane Reformers, Steam Boilers, Process Heaters, Thermal Oxidizers

TECHNOLOGY: ZrO₂, Catalytic Sensors

WDG-V UOP

RANGE

From 0-1% to 0-100%

ACCURACY

±0.75% of measured value or ±0.05%, whichever is greater

PROCESS

Catalytic Reforming/Platforming, Continuous Catalyst Regeneration

MEASURES: 02

APPLICATION

Oxygen Monitoring in CCR

TECHNOLOGY: ZrO₂

WDG Insitu

MEASURES: O₂

RANGE

0-1% to 0-100%

ACCURACY

±1% of measured value or ±0.05%, whichever is greater

PROCESS

Fired Heaters, Power Generation

APPLICATION

Oxygen Monitoring in Power and Steam Boilers, Process Heaters, **Thermal Oxidizers**

TECHNOLOGY: ZrO₂

682T-HP

RANGE

Analysis range for sulfur of 0.02-6.0%

ACCURACY

Repeatability: Typical 1 sigma precision for (100 sec.): 10% relative at 0.04 wt. % sulfur 5% relative at 0.1 wt. % sulfur 0.1% relative at 3.24 wt. % sulfur

MEASURES: Sulfur

PROCESS

Blending Operations, Marine Fuel

APPLICATION

Sulfur Concentration in Crude Oil, Blending Operations, Marine Bunker Fuel

TECHNOLOGY: X-Ray Transmission

WDG-V

MEASURES: O₂, Combustibles (CO+H₂), Methane/Hydrocarbons

RANGE

O₂: From 0-1 to 0-100% Combustibles: 0-2,000 ppmv Hydrocarbon: 0-5%

ACCURACY

O₂: ±0.75% of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range Hydrocarbon: ±5% of full scale output range

PROCESS

Foundry/Metals Production Furnaces, Power Generation

APPLICATION

Combustion Control and Oxygen Monitoring in Reheat Furnaces and Power and Steam Boilers

TECHNOLOGY: ZrO₂, Catalytic Sensors

WDG-HPII

MEASURES: O₂, Combustibles (CO+H₂), Option for Excess Fuel

RANGE

O₂: From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv Furnaces, Kilns to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range

PROCESS Foundry/Metals Production

APPLICATION

Combustion Control and Oxygen Monitoring in Blast Furnace Stoves, Reheat Furnaces and Lime Kilns; Excess Fuel Monitoring of Graphite Electrodes in Electric Arc Furnaces (with Excess Fuel Option)

TECHNOLOGY: ZrO₂, Catalytic Sensor

WDG Insitu

RANGE

0-1% to 0-100%

ACCURACY

±1% of measured value or ±0.05%, whichever is greater

PROCESS

Coke Ovens, Power Generation

APPLICATION

MEASURES: O₂

Process Oxygen Monitoring in Coke Ovens and Power and Steam Boilers

TECHNOLOGY: ZrO₂

9900RM

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

Better than ±1.0% of standard full scale range

PROCESS

Emissions Compliance

MEASURES: SO₂, F₂, Uranium

APPLICATION

Emissions

TECHNOLOGY: UV

To find out more or request a quote, visit our website today

METALS & MINING

Ready to face the challenge

a solution that ensures safety, quality and

efficiency in the high-heat environment of

Using our accurate technologies – including TDLAS lasers, mass spectrometers and UV analyzers – we provide the measurements you require, from furnace control to

metals and mining.

emissions reduction.

AMETEK Process Instruments' expertise delivers

METALS & MINING

IPS-4

MEASURES: SO₂, F₂, Uranium

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Emission Compliance

APPLICATION

Emissions

±2% of reading (typical)

5100HD

MEASURES: CO, CO₂, O₂, H₂O,

ppmv to % level, application dependent

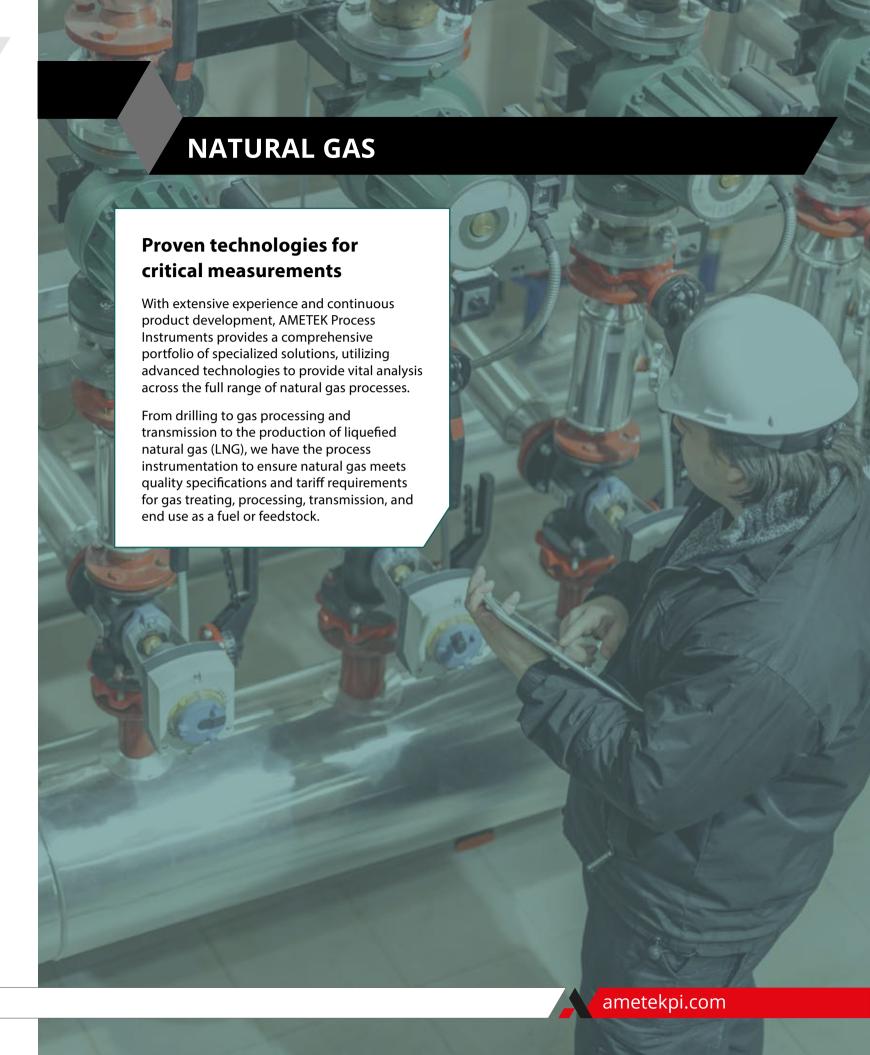
ACCURACY

RANGE

PROCESS

Operations

APPLICATION


Safety, Emissions, Operational Efficiency Monitoring

TECHNOLOGY: TDLAS

TECHNOLOGY: UV/NDIR

NATURAL GAS

3050-OLV

MEASURES: H₂O

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$ or reading, whichever is greater

Transmission Sales Gas Quality, **Custody Transfer Tariff Limits**

AVAILABLE OPTION:

TECHNOLOGY: QCM

PROCESS

Dehydration, Transmission Pipelines, Underground Storage

APPLICATION

Glycol Contactor Efficiency,

AMEVision for 3050 series

TECHNOLOGY: QCM

3050-TE

RANGE

0.1 to 100 ppmv.

Readout capability in

pressure as an input)

whichever is greater

ACCURACY

ppmw, lb/mmscf, mg/Nm³,

and dew point temperature

in °C or °F (requires process

 ± 0.03 ppmv or $\pm 10\%$ of reading,

3050-DO

RANGE

0.02 to 100 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

±0.02 ppmv or ±10% of reading, whichever is greater

TECHNOLOGY: QCM

MEASURES: H₂O

PROCESS

Dehydration, LPG & NGL Fractionation, LNG

APPLICATION

Dryer Efficiency and Breakthroug

AVAILABLE OPTION:

AMEVision for 3050 series

±0.01 ppmv or ±10% of

TECHNOLOGY: QCM

3050-SLR

PROCESS

Dehydration, Transmission Pipelines, LNG

APPLICATION

MEASURES: H₂O

Glycol Contactor Efficiency, Dryer Efficiency & Breakthrough, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

AVAILABLE OPTION:

AMEVision for 3050 series

MEASURES: H₂O

PROCESS

APPLICATION

Turbo Expander

Feed Gas Quality to

AVAILABLE OPTION:

AMEVision for 3050 series

LNG, LPG & NGL Fractionation

RANGE

0.01 to 100 ppmv Readout capability in ppmw, lb/mmscf, ma/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

reading, whichever is greater

TECHNOLOGY: TDLAS

MEASURES: CO₂, H₂O, H₂S

RANGE

5100

0.25-60 lb/MMscf/4-1900 mg/m³ (5 to 2500 ppmv) Other ranges available

ACCURACY

±4 ppmv or ±2% of reading, whichever is greater

PROCESS

Sweetening, Dehydration, Transmission Pipelines, **Underground Storage**

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits

TECHNOLOGY: TDLAS

5100HD

RANGE

H₂O: 0.25 to 60 lbs CO₂: 0-50 ppmv to 0-100% H₂S: 0-300 ppmv to 0-100%

ACCURACY

H₂O: ±4 ppmv or ±2% of reading, whichever is greater CO₂: range dependent H₂S: range dependent

MEASURES: CO, CO₂, O₂, H₂O, H₂S

PROCESS

Dehydration, Sweetening, Transmission Pipelines, Underground Storage, LNG

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: TDLAS

5100P

RANGE

Moisture: 0 to 2500 ppmv CO₂: 0-2%

ACCURACY

±4 ppmv, or ±2% of reading, whichever is greater

PROCESS

Dehydration, Transmission Pipelines, Underground Storage

APPLICATION

MEASURES: Moisture, CO₂

Glycol Contactor Efficiency, Transmission Sales Gas Quality, **Custody Transfer Tariff Limits**

933

RANGE

H₂S: 0 to 3 ppmv min.; 0 to 100 ppmv max. COS: 0 to 15 ppmv min.; 0 to 500 ppmv max. MeSH: 0 to 9 ppmv min.; 0 to 250 ppmv max.

ACCURACY

Standard range: ±2% of full scale Low range: ±5% of full scale

Sweetening, Transmission Pipelines, LNG, Underground Storage

MEASURES: H₂S, COS, CH₃SH

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: UV/IR

931/932

MEASURES: H₂S, Optional COS, CS₂, NH₃, SO₂, H₂, CO₂

RANGE

H₂S: ppmv ranges to high percent levels H₂: 0 to 5% or 0 to 10% Other components and ranges are available upon request

ACCURACY

Standard range (UV): ±1% of full scale Optional (TCD) H₂ sensor for TGTU applications: ±2% on a 0 to 10% range: ±4% on a 0 to 5% range Optional (IR) sensor for THC, CO₂: application specific, consult factory

PROCESS

Drilling Wells, Sweetening, Transmission Pipelines, Underground Storage, LNG

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: UV/TCD/IR

RANGE

241CE II

Cooling capability: Typically 60°C Dehydration, Drilling/Wells, below the temperature at the analyzer installation Highest measurable dew point: Application dependent, typically 15°C below the temperature at the analyzer installation

ACCURACY

Hydrocarbon dew point temperature ±1°C

Liquids Separation

TECHNOLOGY: Chilled Mirror

Chanscope II

RANGE

Dew point temperature ranges: -29°C to ambient, with liquid propane; -62°C to ambient, with liquid carbon dioxide; -129°C to ambient, with optional liquid nitrogen chiller

ACCURACY

±0.2°C at 40°C to -90°C

MEASURES: H₂O and Hydrocarbon Dew Point Temperature

PROCESS

Dehydration, Transmission Pipelines, LPG & NGL Fractionation, Underground Storage, Drilling/Wells

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, **Liquids Separation**

TECHNOLOGY: Chilled Mirror

Model 13

MEASURES: H₂O and Hydrocarbon **Dew Point Temperature**

MEASURES: Hydrocarbon

Transmission Pipelines, LPG & NGL

Glycol Contactor Efficiency,

Custody Transfer Tariff Limits,

Dryer Efficiency & Breakthrough,

Dew Point Temperature

PROCESS

Fractionation

APPLICATION

RANGE

Dew point temperature range dependent on which thermometer is chosen

ACCURACY

±0.25°C

PROCESS

Dehydration, Transmission Pipelines, LPG & NGL Fractionation, Underground Storage, Drilling/Wells

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, **Liquids Separation**

TECHNOLOGY: Chilled Mirror

NATURAL GAS

303B

MEASURES: H₂O

RANGE

0 to 1000 ppmv (0-2000 ppmv range with reduced sample flow)

ACCURACY

±0.5 ppmv or ±5.0% of reading, whichever is greater

PROCESS

Dehydration, Transmission Pipelines, Underground Storage, LNG

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: P₂O₅

IPS-4

MEASURES: HC, NH3, H2O, CO2, Cl2, FeCl₃, CH₃I, SO₂, H₂S, NO, NO₂, ClO₂, NOx, H₂S in rich amine, ASTM color standards, Bisphenol-A, Ethylene Glycol

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Gas Sweetening

APPLICATION

Rich Amine

TECHNOLOGY: UV/NDIR

OXYvisor

RANGE Sensor dependent: BOS1: 0-5% O₂ BOS2: 0-100% O₂ BOS3: 0-300 parts per million by volume (ppmv) with overrange of 1000 ppmv

ACCURACY

Sensor dependent: BOS1: ±0.002% O₂ or ±3% of the measured value. whichever is greater BOS2: $\pm 0.4\%$ O₂ at 20.9% O₂, ±0.05% O₂ at 0.2% O₂ BOS3: ±2 ppm or ±5% of measured value, whichever is greater

PROCESS

MEASURES: O₂

Pipeline quality and custody transfer, Inlet feed to gas plant, Wellhead piping leading to production manifold, Inlet and outlet on the amine absorber, Blanket gas on amine storage tank, Biomethane production

APPLICATION

Parts per million or percent measurements of O₂ in natural gas

TECHNOLOGY: Optical Luminescent Oxygen

ametekpi.com

PHARMACEUTICAL

The remedy for your process requirements

Pharmaceutical applications require outstanding sensitivity and stability combined with accurate real-time monitoring.

AMETEK Process Instruments delivers field-proven systems that provide the multi-component analysis required for fermentation process control and drying while offering compact designs and ease of operation.

PHARMACEUTICAL

WDG-V

(CO+H₂), Methane/Hydrocarbons (CH₄+)

RANGE

O₂: From 0-1% to 0-100% Combustibles: 0-2,000 ppmv Hydrocarbon: From 0-1% to 0-5%

ACCURACY

O₂: ±0.75% of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range Hydrocarbon: ±5% of full scale output range

PROCESS

Fired Heaters, Power and Steam Generation

APPLICATION

Combustion Control in Process Heaters, Power and Steam Boilers, Thermal Oxidizers

MEASURES: O₂, Combustibles

TECHNOLOGY: ZrO₂, Catalytic Sensors

WDG-HPII

MEASURES: O_2 , Combustibles (CO+ H_2)

RANGE

O₂: From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

O₂: ±0.75% of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range

PROCESS Lime Kilns APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂, Catalytic Sensor

5100HD

RANGE

 H_2O : ppmv to % level, application dependent O_2 : 0-5%; 0-25%

ACCURACY

O₂: ±0.2%

MEASURES: O₂, H₂O

PROCESS

Drying Operations

APPLICATION

Moisture in Final Product, Oxygen Concentration in Dryers

TECHNOLOGY: TDLAS

WDG-V

MEASURES: O₂, Combustibles (CO+H₂), Methane/Hydrocarbons (CH₄+)

RANGE

O₂: From 0-1% to 0-100% Combustibles: 0-2,000 ppmv

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range Hydrocarbon: ±5% of full scale output range

PROCESS

Power and Steam Boilers

APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂, Catalytic Sensors

RANGE

WDG-V

O₂: From 0-1% to 0-100% Combustibles: 0-2,000 ppmv Hydrocarbon: 0-5%

Blowback

ACCURACY

O₂: ±0.75% of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range Hydrocarbon: ±5% of full scale output range

MEASURES: O₂, Combustibles (CO+H₂), Methane/Hydrocarbons

PROCESS

Coal Fired Boilers, High Particulate/Dusty Processes

APPLICATION

Combustion Control for Boilers

TECHNOLOGY: ZrO₂, Catalytic Sensors

WDG Insitu

MEASURES: O₂

RANGE

From 0-1% to 0-100% O_2

ACCURACY

±1% of measured value or ±0.05%, whichever is greater

Stratification

PROCESS

Power and Steam Boilers, **Recovery Boilers**

APPLICATION Oxygen Monitoring in Boilers,

TECHNOLOGY: ZrO₂

WDG 1200/1210

MEASURES: O₂

RANGE

0-1% up to 0-25% v/v O₂

ACCURACY

Accuracy: ±1% of measured value or ±0.05%, whichever is greater

PROCESS

Power and Steam Boilers

APPLICATION

Oxygen Monitoring in Boilers

TECHNOLOGY: ZrO₂

POWER & STEAM GENERATION

WDG-HPII

RANGE

O₂: from 0-1% to 0-100% Combustibles: from 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range

PROCESS

Coal Fired Boilers, Waste Wood Boilers, Biofuel Boilers, Recovery Boilers, High Particulate/Dusty Processes

MEASURES: O₂, Combustibles

APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂, Catalytic Sensor

5100HD

MEASURES: CO, CH₄, O₂

RANGE

ppmv to % level, application dependent

ACCURACY

CH₄ and CO: ±2% of reading O₂: ±0.2%

PROCESS

Combustion

APPLICATION

Safety and Operational Efficiency Monitoring

TECHNOLOGY: TDLAS

3050-OLV

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

±0.1 ppmv or ±10% of reading, whichever is greater

TECHNOLOGY: QCM

MEASURES: H₂O

PROCESS Hydrogen Cooled Electric Generators

APPLICATION

Moisture Control

AVAILABLE OPTION:

AMEVision for 3050 series

ametekpi.com

PULP & PAPER, GLASS, CEMENT & LIME

CMFA-P2000

MEASURES: Excess O₂ or

PROCESS Fiberglass Strand and Glass Container Melt Tanks/Forehearths,

100% to 0.1% excess O₂ and 0.1% to 50% excess fuel

ACCURACY

RANGE

Excess O2: ±2% of measured value or ±0.1%, whichever is greater Excess Fuel: ±5% of measured value or ±0.25%, whichever is greater Specifications based on 0-15% range, natural gas

Ribbon Burners on Flame Treating Lines, Brazing Machines (pre-heat, flux, and braze)

APPLICATION Portable Oxygen and Air/Fuel Mixture Monitoring to Control Product Quality in Glass & Fiber Manufacturing

TECHNOLOGY: ZrO₂

RANGE

ACCURACY

is greater

WDG-V

Blowback

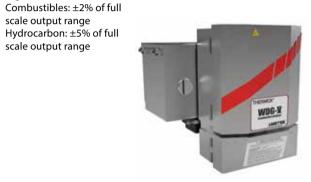
O₂: ±0.75% of measured

scale output range

scale output range

value or ±0.05%, whichever

O₂: From 0-1% to 0-100% Fired Heaters, Process Generation, Combustibles: 0-2,000 ppmv Process Furnaces, Kilns Hydrocarbon: 0-5%


APPLICATION

PROCESS

Combustion Control

MEASURES: O₂, Combustibles

(CO+H₂), Methane/Hydrocarbons

TECHNOLOGY: ZrO₂, Catalytic Sensors

PreMix 2000

RANGE

All or selected portions of the range from 100% to 0.1% excess O₂ and 0.1% to 50% excess fuel

ACCURACY

Excess O₂: ±2% of measured value or ±0.1%, whichever is greater Excess Fuel: ±5% of measured value or 0.25%. whichever is greater

PROCESS

Fiberglass Spinner Blowers/Day Pots, Technical Glass Forming Furnaces

MEASURES: Excess O₂ or

APPLICATION

Control of Product Quality via Oxygen and Air/Fuel Mixture Monitoring in Glass and Fiber Manufacturing

TECHNOLOGY: ZrO₂

WDG-HPII

RANGE

O₂: From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full scale output range

MEASURES: O₂, Combustibles

PROCESS

Kilns, Power Generation, **Process Furnaces**

APPLICATION

Combustion Control and Oxygen Monitoring in Rotary Kilns, Power and Steam Boilers, Black Liquor Recovery Boilers, Multiple Hearth Furnaces, Glass Melting Tank Exhaust

TECHNOLOGY: ZrO₂, Catalytic Sensor

PULP & PAPER, GLASS, CEMENT & LIME

Expertise in action

and NOx waste products.

AMETEK Process Instruments' extensive

knowledge of combustion control and emissions

monitoring plays a key role in industries such as

pulp and paper, glass, and cement and lime.

Our trusted zirconium oxide (ZrO₂) analyzers provide important oxygen measurements, while we offer critical measurements for sulfur dioxide

PULP & PAPER, GLASS, CEMENT & LIME

IPS-4

MEASURES: SO₂, NOx, ClO₂, CO

RANGE

ppmv to 100%

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Emission Compliance

APPLICATION

Pulp Bleaching, **Emissions Compliance**

TECHNOLOGY: UV/NDIR

5100HD

RANGE

ppmv to % level, application dependent

ACCURACY

±2% of reading

MEASURES: CO, CH₄, O₂

PROCESS

Combustion

APPLICATION

Safety and Operational Efficiency Monitoring

TECHNOLOGY: TDLAS

9900RM

MEASURES: SO₂, NOx, ClO₂

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

Better than ±1.0% of standard full scale range

PROCESS

Emission Compliance

APPLICATION

Emissions

TECHNOLOGY: UV

9900WM

MEASURES: SO₂, TRS, CIO₂

RANGE

ppmv/ppmw to 100%,

application dependent

ACCURACY

Better than ±1.0% of standard full scale range

PROCESS

Emission Compliance

APPLICATION

Emissions

TECHNOLOGY: UV

SEMICONDUCTOR, LCD/OLED DISPLAY MANUFACTURING & INDUSTRIAL GASES

Accurate monitoring of moisture and impurity contamination

Moisture contamination and the presence of trace impurities in semiconductor manufacturing are major causes of defects and process variations, significantly impacting yield.

This makes the analysis of moisture and trace impurities essential, both for cleanroom areas where semiconductor wafers are produced and stored, and for the ultra-high purity gases used in manufacturing processes.

A variety of methods are available for measuring moisture and other impurities from high levels to trace amounts. Many manufacturing applications rely on trace measurements of water vapor and other impurities to ensure process quality is maintained.

5910

MEASURES: H₂O

RANGE

0 to 150 ppbv Trend indication to 1000 ppbv

ACCURACY

 ± 100 ppbv or $\pm 10\%$ of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION Quality

MEASURES: H₂O

PROCESS

Quality

Gas Purification

APPLICATION

TECHNOLOGY: QCM

5800

RANGE

0.02 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±20 ppbv or ±5% of the reading, whichever is greater

TECHNOLOGY: QCM

5920

MEASURES: H₂O

PROCESS

Quality

Gas Purification

APPLICATION

RANGE

0 to 150 ppbv Trend indication to 1000 ppbv

ACCURACY

 ± 1 ppbv or $\pm 10\%$ of the reading, whichever is greater

TECHNOLOGY: QCM

5830

RANGE

MEASURES: H₂O

0 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±20 ppbv or ±10% of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

SEMICONDUCTOR, LCD/OLED DISPLAY MANUFACTURING & INDUSTRIAL GASES

3050-AMS

MEASURES: H₂O

RANGE

0.035 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±0.035 ppmv or ±10%, whichever is greater

PROCESS

Gas Purification

MEASURES: H₂O

PROCESS

Quality

Gas Purification

APPLICATION

APPLICATION

Quality

3050-AM

RANGE

0.1 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±0.1 ppmv or ±10%, whichever is greater

PROCESS Gas Purification

MEASURES: H₂O

APPLICATION

Quality

TECHNOLOGY: QCM

3050-RM

TECHNOLOGY: QCM

RANGE 0.1 to 2,500 ppmv Readout capability in ppmw,

lb/mmscf, mg/Nm³, and dew point temperature in °C or °F

ACCURACY

±0.1 ppmv or ±10%, whichever is greater

TECHNOLOGY: QCM

2850

RANGE

0.1 to 1000 ppmv

ACCURACY

 ± 0.05 ppmv or $\pm 5\%$ of the reading, whichever is greater

MEASURES: H₂O

PROCESS Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

ta7000

MEASURES: H₂, CO, CO₂, CH₄, NMHC

RANGE

0 to 199.9 ppbv

ACCURACY

 $\pm 1 \times LDL$ or $\pm 10\%$ of reading, whichever is greater

PROCESS

Quality

APPLICATION

TECHNOLOGY: GC-RGD/FID

RANGE

RGD: 0-3 ppmv **Gas Purification** FID: 0-5 ppmv

ACCURACY

ta5000

 $\pm 1 \times LDL$ or $\pm 10\%$ of reading, whichever is greater

MEASURES: CO, CO₂, H₂,

CH₄, NMHC

PROCESS

Quality

Gas Purification

APPLICATION

MEASURES: O₂

Specialty gas production,

ultra-high purity of inert gases

Trace Oxygen Measurement

PROCESS

APPLICATION

TECHNOLOGY: GC-RGD/FID

ta3000

RANGE

RGD: 0-3 ppmv FID: 0-5 ppmv

ACCURACY

±10 ppbv or ±10% of reading, whichever is greater

TECHNOLOGY: GC-RGD/FID

CEM O₂/TM

RANGE

Gas Purification 1 ppm to 100% O₂

ACCURACY

 ± 0.75 of reading or 0.05% O₂, whichever is greater; ppm: ±2 of reading or 0.5 ppm O₂ absolute, whichever

is greater

TECHNOLOGY: ZrO₂

LC-D

MEASURES: All components m/z 1-300

RANGE

Total Pressure ≤10⁻⁵ torr

ACCURACY

Source sensitivity (Faraday cup): 2 x 10-4 amps per Torr at detector (measured with nitrogen at mass 28) with peak width = 0.5 at 10%height and 1 x 10-3 amps emission current

PROCESS

Chemical Vapor Deposition, Physical Vapor Deposition, Rapid Thermal Processing

APPLICATION

Quality

TECHNOLOGY: Mass Spectrometer

Dymaxion

1-100, 1-200, 1-300 AMU

Source sensitivity (Faraday

cup): 2 x 10-4 amps per Torr

at detector (measured with

nitrogen at mass 28) with

height and 1 x 10-3 amps

peak width = 0.5 at 10%

emission current

RANGE

ACCURACY

m/z 1-300

PROCESS

Chemical Vapor Deposition, Physical Vapor Deposition, Rapid Thermal Processing

MEASURES: All components

APPLICATION

Quality

TECHNOLOGY: Mass Spectrometer

CG1000

RANGE

0.1 ppmv O₂ to 100% O₂

ACCURACY

±2% of reading or 0.05% absolute, whichever is greater

PROCESS

MEASURES: O₂

Rapid Thermal Processing (RTP), Air Separation, Inert Gas Purity (N₂, Ar, CO₂, He, etc.), Blanket/Purge Gases, Glove Box Applications, Cryogenic Gas Generation, Atmospheric Oven/Furnace

Control, UV Curing Ovens

APPLICATION

Trace Oxygen Monitoring for Quality Control of Inert Gas and High Purity Streams

TECHNOLOGY: ZrO₂

TM2000

RANGE

0.1 ppmv O₂ to 100% O₂

ACCURACY

 \pm 1% of reading or 0.02% absolute, whichever is greater

MEASURES: O₂

PROCESS

Air Separation, Inert Gas Purity (N₂, Ar, CO₂, He, etc.), Blanket/ Purge Gases, Glove Box Applications, Cryogenic Gas Generation, Atmospheric Oven/ Furnace Control, UV Curing Ovens

APPLICATION

Trace Oxygen Monitoring for Quality Control of Inert Gas and **High Purity Streams**

TECHNOLOGY: ZrO₂

To find out more or request a quote, visit our website today

MEASURES: CO, CO₂, H₂,

CH₄, NMHC

PROCESS

Quality

APPLICATION

OTHER APPLICATIONS

OTHER APPLICATIONS

Versatile, customized solutions

Our expertise and industry-leading technologies can be used in a range of applications across a variety of industries. If your process demands accurate, high-quality gas analysis, backed by global support and servicing, AMETEK Process Instruments delivers.

Additionally, to ensure accurate and reliable process measurements, a representative sample of the process fluid must be delivered to the analyzer. A well-designed sample conditioning system will consider filtration, temperature, pressure, flow rate and environmental conditions. Installations may require a full analyzer shelter including analyzers, sample systems, calibration gases, HVAC controls, and power distribution.

Contact AMETEK Process Instruments or your local AMETEK representative for more information on our analyzers.

CABINETS, SHELTERS & HOUSES

WDG-VRM

MEASURES: Hot/Wet O₂ or Cold/Dry O₂

RANGE

From 0-1% to 0-100%

ACCURACY

 $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater

PROCESS

Emission Monitoring

APPLICATION

or Net Oxygen Measurement er for CEM

TECHNOLOGY: ZrO₂

CEM/O₂

MEASURES: Wet O₂ or Dry O₂

PROCESS

RANGE

0.1% to 0-100% FID: 0-5 ppmv

ACCURACY

 $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater

Emission Monitoring

TECHNOLOGY: ZrO₂

CEM Humox

RANGE

O₂: 0.1% to 100% Moisture: 5% to 85% by volume

ACCURACY

 O_2 : $\pm 0.75\%$ of reading or $\pm 0.05\%$ absolute Moisture: $\pm 3\%$ of reading or $\pm 1\%$ absolute, whichever is greater

PROCESS

Emission Monitoring

APPLICATION

Net Oxygen Measurement

MEASURES: Wet & Dry O₂,

120HD

RANGE

0 to 25% H₂ in water-saturated air

ACCURACY

±4% full scale (±1% H2 v/v)

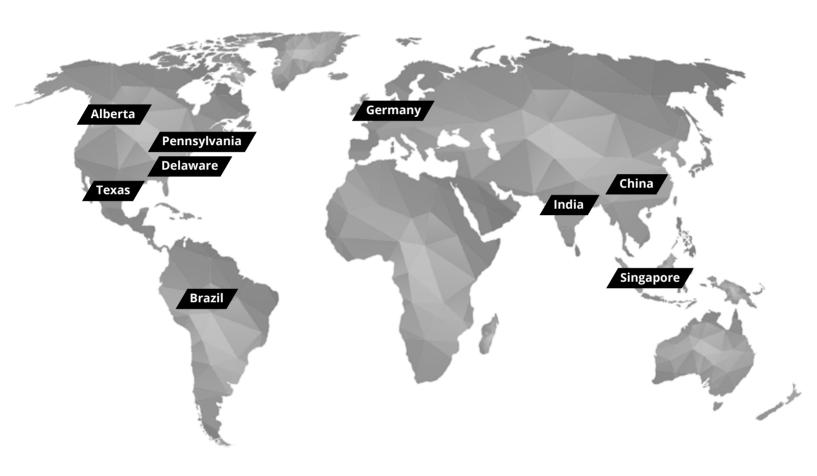
PROCESSTurbine halls

APPLICATION

Lead-acid Battery Charging

MEASURES: H₂

TECHNOLOGY: Katharometer


TECHNOLOGY: ZrO₂

AMETEK Process Instruments delivers worldwide sales and service support through a network of direct and factory-trained global distribution channels.

AMETEK Service Assistance Program plans offer coverage up to 24 hours a day, 365 days of the year.

As worldwide experts in the manufacture of process analyzers and instrumentation, we have supplied solutions to industry since 1962, providing the widest range of analysis technology available.

Through process application consulting, we create custom-designed solutions that meet the needs of your specific application or process.

SALES, SERVICE & MANUFACTURING

USA - Pennsylvania

150 Freeport Road Pittsburgh PA 15238 Tel: +1 412 828 9040

Fax: +1 412 826 0399

USA - Delaware

455 Corporate Blvd. Newark DE 19702 Tel: +1 302 456 4400

Fax: +1 302 456 4444

Canada - Alberta

2876 Sunridge Way NE Calgary AB T1Y 7H9 Tel: +1 403 235 8400 Fax: +1 403 248 3550

USA

Tel: +1 713 466 4900 Fax: +1 713 849 1924

Brazil

Tel: +55 19 2107 4100

Germany

Tel: +49 2159 9136 0 Fax: +49 2159 9136 39

India

WORLDWIDE SALES AND SERVICE LOCATIONS

Tel: +91 80 6782 3200 Fax: +91 80 6780 3232

Singapore

Tel: +65 6484 2388 Fax: +65 6481 6588

China

Beijing

Tel: +86 10 8526 2111 Fax: +86 10 8526 2141

Chengdu

Tel: +86 28 8675 8111 Fax: +86 28 8675 8141

Shanghai

Tel: +86 21 5868 5111 Fax: +86 21 5866 0969

© 2021, by AMETEK, Inc. All rights reserved. Printed in the U.S.A. F-0393 Rev 2 (08/21) One of a family of innovative process analyzer solutions from AMETEK Process Instruments. Specifications subject to change without notice.

AMETEK Process Instruments delivers worldwide sales and service support through a network of direct and factorytrained global distribution channels.

As worldwide experts in the manufacture of process analyzers and instrumentation, we have supplied solutions to industry since 1962, providing the widest range of analysis technology available.

Through process application consulting, we create custom-designed solutions that meet the needs of your specific application or process.

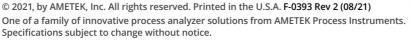
ETA Process Instrumentation

www.etapii.com

sales@etapii.com tel 978.532.1330

New England

Martech Controls


www.martechcontrols.com

sales@martechcontrols.com

tel: 315.876.9120

Upstate New York

